
Chapter 17
The Genotype–Phenotype Maps of Systems
Biology and Quantitative Genetics: Distinct
and Complementary

Christian R. Landry and Scott A. Rifkin

Abstract The processes by which genetic variation in complex traits is generated
and maintained in populations has for a long time been treated in abstract and
statistical terms. As a consequence, quantitative genetics has provided limited
insights into our understanding of the molecular bases of quantitative trait variation.
With the developing technological and conceptual tools of systems biology, cellular
and molecular processes are being described in greater detail. While we have a
good description of how signaling and other molecular networks are organized
in the cell, we still do not know how genetic variation affects these pathways,
because systems and molecular biology usually ignore the type and extent of genetic
variation found in natural populations. Here we discuss the quantitative genetics and
systems biology approaches for the study of complex trait architecture and discuss
why these two disciplines would synergize with each other to answer questions that
neither of the two could answer alone.

1 Evolution and the Molecular Underpinnings of Phenotypic
Variation

Evolution proceeds in two phases: variation is generated and then sorted into
the next generation. We now have a detailed knowledge of these two levels of
evolutionary change. On the one hand, advanced research in molecular biology
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has provided clear descriptions of how mutations and chromosomal changes take
place in organisms and estimates of the rates at which they occur [1, 2]. Population
genetics has repeatedly seized upon new technologies to dissect the evolutionary
forces acting on this genetic variation, now at thousands of loci genome-wide. At the
other end of the spectrum of evolutionary biology, quantitative genetics has provided
us with statistical models and descriptions of how phenotypic traits evolve under
natural selection and genetic drift. However, except for relatively simple cases,
we know little about how mutations modify the activity and dynamics of cellular
networks and how this mechanistically translates into variation in phenotypes. For
instance, comparative genomics of closely related Drosophila species has suggested
that a large fraction of amino acid differences were fixed by natural selection,
but their effects on phenotype remain unknown [3]. In parallel to the advances in
population genetics, detailed descriptions of many cellular networks have emerged
from investigations in cell and systems biology. In several cases, we have a clear
picture of how cells perceive signals and how these signals are integrated to modify
the physiology and the development of the organisms. Current models of these
networks explain some of their dynamic properties including robustness, thresholds,
homeostasis, and bistability.

Despite this tremendous progress, understanding how natural genetic variation
affects complex networks and phenotypes remains one of the most important
challenges in life sciences, as it would enable us to predict phenotypes from
genotypes [4]. As the molecular details of how cellular networks integrate and
translate genetic and environmental cues into complex phenotypes accumulate,
we should be better able to describe how genetic variation affects phenotypes in
molecular terms. However, because many developmental and cellular studies are
based on single genetic backgrounds in a restricted set of environmental conditions,
it is often far from clear how phenotypic variation arises, including context-
dependent effects (epistasis, genotype-by-environment interaction) and incomplete
penetrance of different alleles. To understand the generation of variation with exist-
ing conceptual and experimental tools, we propose that there needs to be a merger
of quantitative genetics and systems biology. Here we discuss quantitative genetics
and systems biology approaches for understanding phenotypic trait architecture and
their limitations. We point to possible ways to combine them in order to gain a better
understanding of how mutations translate into phenotypic variation to ultimately
fuel evolution. We mainly draw our examples from research on the budding yeast
Saccharomcyes cerevisiae because this species has been used extensively as a test
bed for both quantitative genetics and systems biology.

As we will see below, genotype–phenotype maps are virtual representations
of how genes and alleles of genes relate to particular phenotypes. In quantita-
tive genetics, these representations are often based on statistical associations be-
tween genotypes (alleles found in natural populations) and phenotypes. In systems
biology, these maps most often represent functional associations between genes
and phenotypes and are based on the systematic perturbation of the organism
(gene deletion, drug treatments). While these two approaches both aim at describing
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Fig. 17.1 QTL and systems biology approaches for identifying genes involved in cell shape in
yeast identified two distinct groups of genes. Genetic variation that affects cell morphology among
strains of yeast is not necessarily found in genes that, when deleted, affect cell morphology in the
laboratory strains

gene–phenotype relationships, they often provide different pictures. An example of
investigation on the genetic bases of cell morphology in the budding yeast illustrates
how these two approaches can provide distinct results.

Single-celled organisms such as the budding yeast show variation in cell
morphology that depends on cell-cycle stages, growth environments, and genetic
backgrounds. Genes involved in determining normal cell morphology have been
systematically identified using multidimensional phenotypic screening of 500 pa-
rameters on a set of 5,000 strains for which one gene was systematically deleted
[5]. Half of the gene deletions of nonessential genes were found to affect one or
more of the parameters describing cell morphology. Cell morphology is also known
to vary among yeast strains. If one were planning on mapping genetic variation in
natural populations that affects cell shape and morphology, would it be sufficient
to sequence the 2,378 genes known to be involved in controlling cell morphology
to find the causal genetic variation? A following study showed that this would
absolutely not be the case. The same parameters were measured using exactly the
same techniques in a pair of yeast strains and their F2 progenies [6] in order to
identify loci that would associate with the morphological differences between these
two strains. Quantitative trait loci (QTL) for 95 of the traits could be mapped to
specific loci. Only in one case did the QTL fall in the vicinity of a gene that had
been found to affect cell morphology in the initial gene deletion screen (Fig. 17.1).
If natural selection were to act on these traits in natural populations where the strains
were sampled, it would most likely favor the fixation or elimination of alleles of loci
that are not those found to affect cell morphology by gene deletion. This example
is a particularly relevant one as both experiments were performed with identical
platforms by the same laboratory and thus discrepancies are unlikely to come from
technical differences. Why are different genes identified? Why do we need to study
natural variation if we have identified the key genes in the laboratory strains?
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We start with a review of the rationale of the two types of approaches and then
discuss how their combination would enhance our comprehension of the molecular
underpinnings of phenotypic evolution.

2 How are Quantitative Traits Transmitted Between
Generations?

Quantitative genetics is a century old discipline with a rich theoretical foundation
and a set of techniques that can be used for a range of purposes. Evolutionary
biologists and agricultural breeders have tended to use these techniques to ask
questions about the short-term phenotypic effects of selection in populations under
particular mating schemes. In the last 20 years, molecular geneticists have used
quantitative genetic techniques to identify loci underlying differences of interest
in specifically constructed populations. Often these methods serve as foundries for
generating candidate genes to feed into traditional molecular and developmental
biology research projects. These complementary aspects are beginning to merge,
particularly in plant and animal breeding and evolutionary genomics.

Quantitative genetics arose from an attempt to reconcile the inheritance of
continuously varying traits with the particulate transmission genetics of Mendelism.
In the late 1800s and early 1900s, the biometricians argued that the abundant
variation in these quantitative traits could not be tied to the factors that were posited
to underlay the discontinuous characters favored by the Mendelians. Continuous
characters, they claimed, must have a different hereditary basis and different
evolutionary properties. Because the Mendelians focused on transitions between
discrete characters, they thought evolution proceeded by large steps—that mutations
in the few loci underlying a trait would have large phenotypic effects. It took a series
of experiments and theoretical work in the 1910s to demonstrate how particulate
genes, when combined in large numbers, could generate the quantitative variation
and covariation among relatives that so exercised the biometricians [7].

At its root, this disagreement was about how trait values and the distribution of
these values in a population are transmitted to the next generation—they disagreed
over the logic of genetics. Consider the fanciful case of an asexual organism that
perfectly transmits its phenotype to its progeny. In this case the distribution of
trait values in the population would only change from one generation to the next
if individuals begat different numbers of offspring. For real organisms, traits are
not perfectly inherited but are instead passed on with some variation. Nonetheless,
offspring do often resemble their parents. Quantitative genetics asks whether the
distribution of trait values (in particular the mean and variance of these values)
changes in predictable ways from one generation to the next depending upon the
mating system, transmission genetics, and evolutionary forces such as selection,
mutation, migration, and drift. This often depended upon certain assumptions about
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how trait values could be reconstructed from properties of the underlying genetic
factors. This genetic architecture underlying a quantitative trait consists of [8,9]:

1. The number of loci involved;
2. The magnitude of the phenotypic effects of alleles at these loci or at least their

average size and distribution;
3. How these effects are tempered by intra-locus (dominance) and/or inter-locus

(epistasic) interactions;
4. Correlations between phenotypic effects of a locus on multiple traits (pleiotropy)

For much of its history, quantitative genetics was independent of the details of the
actual loci underlying the trait. It was a theory of shifts in means and variances
of phenotypic variation across generations given assumptions about the genetic
architecture. By making reasonable assumptions about the genetic architecture,
researchers could partition the variance in a trait into statistical components
that reflected the aggregated properties of the underlying loci and had different
implications for the response of the population to selection [10]. This worked
remarkably well and was used to improve agricultural yields, study the effects of
selection on morphological, life-history, and behavioral traits, and explain the fitness
effects of inbreeding and bottlenecks [10]. There was no real way to drill down
from trait variation to the molecular level, nor was it necessary for many types of
predictions. The introduction first of highly variable molecular markers and then the
ability to massively catalog single-nucleotide polymorphisms by sequencing made it
possible to estimate the phenotypic effects of specific molecular differences between
genotypes using QTL analysis [11]. These techniques would finally make it possible
to work out the particulate details of inheritance of continuous traits. They have
also instigated a reconceptualization of how quantitative genetic concepts should be
defined.

QTL analysis and its congeners are widely used tools in medical, agricultural,
and evolutionary genetics, and on a coarse level they have the same goal as systems
biology—identifying important loci underlying a trait in order to predict phenotypes
from genotypes. However, at a finer level of resolution the two differ in what kinds
of loci they identify and what kinds of predictions they make possible. To parse
these differences we will start with a concrete picture of genotype and phenotype
spaces and examine how each field samples and connects them.

3 Phenotype Space

A phenotype is a description of an aspect or trait of an organism (or other biological
entity such as a protein or a cell). At the most basic level, describing a trait in a
collection of organisms consists of associating a phenotypic description with each
organism thereby constructing a set of phenotypes. The structure of the phenotype
space depends on the properties of this set, for example whether it has an ordering



376 C.R. Landry and S.A. Rifkin

or whether it makes sense to talk about distances between two different trait values.
For example, height is a phenotype with a clear ordering and distance measure.
It is less straightforward to think of an ordering and distance measure between
different possible structures of a protein: a derived phenotype such as Gibbs free
energy might serve this purpose. For both quantitative genetics and systems biology,
phenotypes can often be represented as numbers on the real number line which both
helps with intuition and computation. Indeed, in cases where a phenotype is discrete
but ordered, biologists may posit that there is a hidden continuous phenotype which
is thresholded to produce the discrete pattern and then proceed to work with this
posited hidden phenotype to the extent that the data allows [12–14].

4 Genotype Space

The genotype describes the identity of the alleles of an organism at each locus.
A locus can be thought of as a location on the chromosome that houses a gene while
an allele is one of several variants of the gene. Alleles could differ by as little as a
single base pair or as much as the whole locus (as with a knockout). The genotype
is a discrete space. The number of possible alleles at each locus, the ploidy of the
organism, and the rules for moving from one genotype to another determine its
structure. One common simplification is to assume a haploid or diploid organism
with two alternative alleles at each locus where the allele at a single locus can be
changed in a single time step. For a haploid, the genotype space would then be a
hypercube where genotypes are the vertices of the hypercube and the dimensionality
of the hypercube depends upon the number of loci considered (Fig. 17.2). An
edge of the hypercube would correspond to changing one allele for another at a

haploid 3 locus genotype space diploid 3 locus genotype space

A2B2C2

A1B1C1

Fig. 17.2 Representation of genotype spaces. A haploid genotype space with three loci (A,B,C)
each with two alleles (1,2) is on the left. Genotypes are marked at the vertices and edges are single
allele changes. A diploid genotype space with three loci each with two alleles is on the right
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particular locus. The diploid space could also be arranged into a hypercube with a
slight twist. Homozygous genotypes would populate the outer vertices of the cube,
but an intermediate vertex representing the heterozygote for the corresponding locus
would lie in between the homozygotes (Fig. 17.2). As in the haploid case, moving
between two vertices would correspond to changing the identity of a single allele.
To demonstrate the concepts of quantitative genetics, we will consider the diploid
two-locus, two alleles case. More alleles, more loci, or higher ploidy are harder to
visualize but the concepts extend straightforwardly.

5 Imperfect Sampling Complicates Estimating
Genotype–Phenotype Maps in Finite Populations

A typical genotype–phenotype map consists of pairing each genotype with one or
more phenotypes (Fig. 17.3).1 Quantitative genetics is concerned with identifying
regularities in this map. One way to approach this would be to sample a population
measuring phenotypes and measuring or inferring genotypes or at least relatedness.
A researcher would use this data to estimate how changing alleles changes trait
values and variances of these values. In practice, however, each possible genotype
can be sampled only if a small number of loci are considered. This becomes a
problem if the phenotypic effect of swapping one allele for another depends upon the
genotype—upon the identity of alleles at other loci. Although the actual genotypes
in a population could be randomly sampled, the set of possible genotypes would not
be. In this situation, estimates of the effects of swapping alleles could be biased,
and in various quantitative genetic methods (usually general linear models [15])
allele frequencies and genotype-specific effects are entangled. The average effect of
changing from allele A1 to allele A2 in a particular population (with its particular
set of genotypes) will not be the same as the effect of changing from allele A1 to
allele A2 in general, i.e. averaged across all possible genotypes.

Entangling these effects is often fine for some purposes—for example if the goal
is to predict changes in the distribution of trait values in a specific population in
response to selection [14–16]. But from a mechanistic perspective we would like
to be able to predict how an individual trait value would change upon moving
from one genotype to another—by mutation, for example. This is more akin to the
approach of systems or synthetic biology where scientists investigate the phenotypic
effects of specific perturbations. If we understood this map, we could then predict
the phenotype distribution in a population by combining this mechanistic map with
information on allele or genotype frequencies.

1A single genotype can sometimes give rise to multiple phenotypic values depending on environ-
mental conditions or random factors such as developmental and gene expression noise.
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6 An Idealized Diploid, Two-Locus, Two-Allele Case

To demonstrate the concepts of quantitative genetics, we will focus on the ideal
case of a one-to-one or many-to-one mapping between genotype and phenotype
where we do not have to sample because we know all genotype–phenotype pairs.
Following the model of Wagner et al. [15], we will illustrate how a matrix of
phenotypic values can be constructed from a set of more basic components. This
model is but one of several mathematical representations of epistasis [16–18].
We chose to focus on it because it lends itself more readily to a mechanistic
interpretation than other representations [15].

The most fundamental objective of most uses of quantitative genetics is
to estimate the phenotypic effect of swapping one allele for another because
this is how evolution by natural selection proceeds (see [19] for an alternative

�
Fig. 17.3 A genotype–phenotype map for a diploid, two-locus, two-allele system and its genetic
architecture. Panel (b) depicts the map with the genotype space as the base and the heights of
spheres above the base representing phenotypic values. Panel (a) depicts the projection of the
phenotype landscape looking across the A alleles [from right to left in panel (b)]. In this example,
the phenotypes collapse to a single line. The closed circles are the projections of the spheres from
panel (b). The open circles are the average phenotypes at each B locus genotype. Panel (c) is
similar to panel (a) except looking across the B alleles (from front to back in panel (b). Open and
closed circles are as described for panel (a). Panel (d) depicts the decomposition of the genotype–
phenotype map into additive, dominance, and epistatic components [15]. The matrices represent
these components for each genotype (first matrix on the left) and can be summed to generate
the phenotype landscape. G11,11: phenotypic value for genotype A1A1B1B1. This is the reference
genotype and components are defined as deviations from this base value. aA,11: the additive effect
of substituting an A2 allele for an A1 allele. aB,11): the additive effect of substituting a B2 allele for
a B1 allele. dA,11: the dominance effect of substituting an A2 allele for an A1 allele in the genotype
A1A1. Note that the right column is zero indicating that there is no dominance effect of this
substitution when the starting genotype is A1A2. dB,11: the dominance effect of substituting a B2
allele for a B1 allele in the genotype B1B1. edB∏A: a factor denoting the increase in the dominance
deviation at locus A due to an additive change from B1 to B2. This is additive-by-dominance
epistasis. The total dominance deviation for locus A then becomes dA,11(1 + edB∏A). edA∏B:
a factor denoting the increase in the dominance deviation at locus B due to an additive change
from A1 to A2. edd12,12: additional deviations in the double heterozygote including dominance-
by-dominance epistasis. EAB: the additional additive effect of additive substitutions at the A locus
due to a B1 to B2 change at the B locus. This is symmetric with respect to the loci and so is
mathematically equivalent to the additional additive effect of additive substitutions at the B locus
due to an A1 to A2 change at the A locus. In other words, additive-by-additive epistasis introduces
the same deviation at each locus. This symmetry is due to differences in how this kind of epistasis
scales the additive effects at each locus. aA,11eB∏A = aB,11eA∏B = EAB where the eX∏Y terms
indicate the factor by which each additive deviation is scaled. Note that if the additive deviation
at locus A (aA,11) is larger than that at locus B (aB,11), the additive-by-additive epistatic effect of
locus A on locus B (eA∏B) is necessarily bigger than the equivalent for locus B (eB∏A). Moreover,
aA,11/aB,11 = eA∏B/eB∏A
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conceptualization).2 These are allelic effects. Unfortunately, estimating this effect
is not always straightforward. Figures 17.3–17.5 depict genotype–phenotype maps
for a diploid, two-locus, two-allele case with a real-valued phenotype represented
by a vertical height.3 As the phenotypic landscapes become more complicated,
it becomes less straightforward to determine the effect of swapping alleles at a
locus because this effect becomes context dependent in several different ways. Each
figure has four panels. In each figure, panels a and c show the projections of the
phenotypes across variation in the A locus (panel a; looking across the panel b
right to left) and across variation in the B locus (panel c; looking across panel b
front to back), and the open circles in panels a and c represent the averages of the
phenotypes for each genotype, averaged across the other locus. The subpanels of
panel d decompose the phenotypic values into 9 orthogonal components in matrix
form (see Fig. 17.3 caption).

In this two-locus, two-allele system, each genotype is accessible from any other
genotype via 0,1, or 2 substitutions at each locus. This means that we can arbitrarily
assign one genotype to be a reference from which we measure deviations due to
various allele swaps. We will use the genotype A1A1B1B1 as our reference. Note
that the phenotypic value of the reference does not affect the phenotypic effect of
substituting one allele for another.

Our goal will be to uncover regularities in how the phenotypic value changes
when one allele is swapped for another—when moving along an edge of the
genotype space of Fig 17.2. This involves partitioning the effect of any given allele
swap into different components. There are three main categories. First are context
independent effects: for example, changing from allele A1 to A2 adds 3 units to the
phenotypic value. This is the additive effect. Second, the effect of changing alleles
at a locus may depend upon the starting genotype at that locus. For example, if
the genotype is A1A2, then changing from A1 to A2 adds an extra 2 units to the
phenotypic value. This is a dominance effect. Third, the effect of changing alleles
at a locus may depend upon the genotype at other loci. For example, changing from
A1 to A2 adds an extra 4 units to the phenotypic value if the genotype at locus B is
B1B2. This is an epistatic effect. These effects can be combined. For example, the
size of the dominance effect may depend upon the genotype at locus B. This would
be an epistatic effect on dominance. The total phenotypic effect of an allele swap
would then be the sum of these component effects.

2It is increasingly clear that copy number differences are pervasive within populations. How
duplications or deletions are handled within quantitative genetics depends upon how the genotype
space is set up and conceptualized. Traditionally the edges of a genotype space (see Fig. 17.3)
represent mutations between different alleles at a locus where each locus is a single copy. However,
these genotype spaces could be used to represent movement between copy number variants. The
“allele swapping” represented by an edge would not be point mutation or small indels but would
instead be duplications or deletions. In this case the “allele” would be the copy number of the gene.
3Usually, the genetic component of a phenotype for a genotype that is predicted by a quantitative
genetic model is called the genotypic value. In these examples we do not have any environmental
effect and so the phenotypic landscape is also the landscape of genotypic values. For consistency
with the systems biology section, we will talk in terms of phenotypes instead of genotypic values.
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7 Additivity

Figure 17.3c demonstrates that if the B genotype is held constant, all three A locus
genotypes have the same value. There is no effect of substituting A2 for A1 and
the parallel lines indicate that this relationship between the A genotypes does not
change depending upon the genotype at the B locus. Figure 17.3a indicates that
there is an effect of changing from B1 to B2 and that it is the same effect whether
going from B1B1 to B1B2 or from B1B2 to B2B2; the average heterozygote falls
on the line connecting the two average homozygotes. The relationship between the
B genotypes collapses to a single line—the average—in the left panel indicating
that swapping between these two alleles at the A locus plays no role at all in
the phenotypic variation here. This does not necessarily imply anything about the
essentiality or mechanistic importance of the A locus or whether the protein from
this locus physically interacts with the B locus protein or any other proteins. It does
not mean that swapping between any alleles at the A locus has no effect. It only
means that changing between the two A locus alleles under consideration has no
phenotypic effect.

8 Dominance and Epistasis

The genotype–phenotype map of Fig. 17.4 is more complicated because it includes
two deviations from additivity. The curves in Fig. 17.4a are straight but not parallel.
The effect of changing from B1 to B2 does not depend upon the genotype at the
B locus but does depend upon the genotype at the A locus. With A1A1 in the
genetic background, substituting B2 for B1 increases the phenotypic value while in
an A2A2 genetic background, the same substitution decreases the phenotypic value.
This dependence of the additive effect of an allelic change at one locus on the genetic
background is called additive-by-additive epistasis. In this example with only two
loci, this is second-order epistasis. However, if more loci were considered, the allelic
effects at locus B could depend upon genotypes at one, two, or more other loci,
constituting ever higher orders of epistasis. In the panel on the right, the averages
across the B locus (open circles) indicate that the effect of changing A1 to A2
depends on the genotype at the A locus. Moving from A1A1 to A1A2 has negligible
effect while A2A2 has a lower phenotypic value than A1A2. This curvature of
the lines connecting the average values of genotypes at the A locus indicates
dominance, which is a deviation of the heterozygote value from the average value
of the homozygotes. The relationship between the three curves corresponding to the
A locus values at each of the three B locus genotypes seems rather complicated,
but is simply a superposition of additive, dominance, and epistatic effects. The
complicated pattern on the right can be reconstructed by adding the additive and
dominance patterns at A to the additive-by-additive epistasis pattern (Fig. 17.4d).
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9 Higher Order Genetic Interactions

Even more complicated patterns can result when dominance relationships at one
locus depend on the genotype at the other locus (dominance-by-additive epistasis).
That is, when the form of an intra-locus relationship is a function of genotypes at
more than one locus (Fig. 17.5). The curves on projection panels 5a and 5c show
that there is no straightforward relationship between genotype and phenotype in
this example. However, if a particular phenotype were measured using systems or
molecular biology approaches only for heterozygotes at the A locus, the map might
appear misleadingly simple. When the A locus is heterozygous, changing alleles
at locus B has no effect. However, the same changes at B have strikingly different
effects if the genotype is homozygous at locus A. Figure 17.5 demonstrates that
studying a system in several genetic backgrounds can be crucial for truly under-
standing how phenotypes are generated by their underlying factors. Quantitative
genetics can highlight when allele changes are likely to have an effect and when
they will be masked.

10 Robustness

An allelic substitution in a homozygous dominant genotype has no phenotypic
effect. This is a single locus example of robustness or canalization [20]. In general,
if substituting alleles at a particular genotype has little effect, this genotype is robust
to mutation or allelic substitution. One could visualize this by considering a local
region (neighborhood) of the genotype space and the phenotypes associated with it.
A 1-mutant neighborhood of a genotype, for example, would be the set of genotypes
which differ from the focal genotype by a single mutation. This focal genotype
would be robust to mutation if the phenotypes of its neighbors were similar. In
this situation, the phenotype landscape would be relatively flat and unchanging
with respect to mutation. This is akin to a parameter sensitivity analysis that is
commonly used in dynamical systems modeling. If mutations have the effect of
changing rate constants of reactions and other biochemical parameters, one might
expect that a robust genotype would locate the biological system in a relatively
insensitive region of parameter space. Although intuitive, this need not necessarily
be the case: the phenotypic landscape with respect to mutation need not look the
same as the phenotypic landscape with respect to parameter change. The phenotype
landscape on the left of Fig. 17.6 could be generated by varying two parameters
in a dynamical systems model. The mapping from a four-locus, two-allele haploid
genotype space on the right to the phenotype landscape is indicated for a 1-mutant
neighborhood around a focal genotype. The genotype is robust in the sense that
mutants maintain the same phenotype even though the map from parameter value to
phenotype is not flat [21].
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Fig. 17.6 The mapping of a local genotypic neighborhood onto phenotype space. The neighbors of
the vertex with a gray circle around it (on the right) all have a similar phenotypic value (on the left),
but the phenotypic landscape is not flat. In this case, the phenotype landscape is defined as it would
be in systems biology—by varying two different parameters over some range. Distances in the
phenotype space are therefore defined with respect to unit changes in the parameters. In quantitative
genetics, phenotype landscapes are often defined with respect to unit changes in genotype—i.e.
mutation

Empirical studies of genotype–phenotype maps in quantitative genetics mostly
concentrate on the QTL mappings of traits of agricultural or ecological interests.
Typically, these studies involve crosses between two genotypes that show large
differences in the phenotypes of interest, analysis of recombinant genotypes (F2
hybrids or backcrosses) and phenotypes, and tests for an association between geno-
types and phenotypes. Molecular markers that co-segregate with the phenotypes of
interest allow loci with significant effects on the phenotype to be identified. Their
relative contributions to the trait, the level of pleiotropy of each QTL (how many
traits each QTL affects) and epistasis among QTLs, can also be estimated. For the
vast majority of studies, the QTLs identified are not dissected to a level where
the actual causal DNA variants can be identified. There are two main reasons for
this. First, most studies do not have the necessary resolution to narrow down QTL
positions to specific nucleotides. This could be due to the small number of markers
used and the small number of recombinant genotypes (number of recombination
events) in the cross. The second reason is that estimating the variance due to
additive, epistatic, and dominance effects even without identifying individual loci is
often sufficient to answer fundamental questions about the evolution of quantitative
traits in agriculture and in the wild.
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11 What is a Genotype–Phenotype Map as Described
by Systems Biology Approaches?

As seen above, quantitative genetics models of genotype–phenotype maps help
predict and understand the outcome of evolution under specific selection regimes,
the number of loci affecting the trait and the maintenance of genetic variation for
a particular trait. Quantitative genetics is, however, largely blind to the mapping
between the actual DNA sequences of the loci involved and the phenotypes at the
molecular levels. Even when the actual causal DNA variants have been identified
in QTL analysis, it remains difficult to draw the functional map between the
sequence and the trait while including all the intermediate endophenotypes [4]
(mRNA levels, protein levels, protein localization and modifications, signaling
pathways activation, etc.), which is necessary for a complete understanding of
the mechanisms of evolution and to eventually be able to predict phenotypes
from DNA sequences alone. To overcome these limitations, many evolutionary
biologists are turning to systems biology approaches where the main goals are to
systematically identify all the genes involved in a trait and map the interactions
among the genes and gene products involved. However, as we will see below, the
two types of genotype–phenotype maps considered in the two approaches might not
be completely equivalent and the best way to go might be to combine them.

12 Modular Biology

Systems biology is rich in operational definitions that help researchers formulate
testable hypotheses and experiments at the molecular level. Typical approaches of
experiments designed to directly link genes to phenotypes include the perturbation
of a large number of genes and the measurement of the effects of these perturbations
on traits of interest. Some types of experiments lead, for instance, to the annotation
of genes as being essential for normal development in multicellular organisms
[22] or genes that allow growth in a particular condition [23]. The genotype-
phenotype map then consists in connecting a gene to a trait when perturbing
that gene affects the trait (Fig. 17.7). As with QTL mapping experiments, these
results allow researchers to identify the number of genes involved in each trait,
their relative contributions, and their pleiotropic effects. When combinations of
perturbations are considered, they allow interactions among genes to be estimated
[24]. Very often investigators expect to identify a few key genes that are functionally
related and that are responsible for the trait. Indeed, one of the predominant models
describing how cells work posits that cellular functions—and thus phenotypes—are
accomplished by groups of interacting molecules that form independent modules
[25]. Accordingly, complex cellular functions cannot be reduced to particular genes
but can be attributed to group of genes or proteins that interact in a particular manner.
By definition, these modules are to some extent independent of each other [26], and
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Fig. 17.7 Genotype–phenotype map of carbon source utilization in the budding yeast. Dudley
et al. [23] grew a set of about 5,000 strains of budding yeast that each had a gene deleted on
different carbon sources. By measuring the growth rate of the strains, they could associate hundreds
of genes that are each required for normal growth on glycerol, lactate, galactose, and raffinose.
These maps reveal that some genes are required to grow in several conditions (pleiotropy) and that
some growth conditions require more genes than others. Only genes that were identified as being
required for growth in at least one condition are represented

if we could comprehend their responses to intracellular and extracellular factors,
we would understand the development of the particular trait to which this module
contributes.

This modular vision of the cell is key to major advances in systems biology
because it restricts the number of genes, proteins and RNAs and other molecules
that need to be considered in mathematical models of complex behaviors such as
cell decisions and commitment. This approach is extremely powerful. For instance,
modeling, mutating, and replacing some of the key elements of these modules can
modify the dynamic behavior of the cell in a predictable manner, i.e. they can make
genotype–phenotypemaps predictable. Clear demonstrations that we understand the
function of a module include its isolation and its functional reconstitution from a
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minimal set of elements. This has been shown for instance for the eukaryotic cell
cycle control network whereby a minimal control system has been engineered to
drive cell division events in a coordinated fashion [27] when introduced in a cell
or for the assembly of a synthetic MAP kinase cascade that shows complex and
predictable behavioral responses to external stimuli [28]. These experiments show
that the elements necessary and responsible for these dynamic phenotypes have been
identified and can be manipulated to work in a non-native context in a predictable
fashion. With the development of synthetic biology approaches that enable the
rational design of cell signaling circuits [29], we expect more demonstrations of this
kind to support existing models of how modular structures regulate cell functions.

The success of systems biology at manipulating cellular behavior through the
modification and isolation of cellular modules suggests that by identifying these
modules, we are moving closer to a complete understanding of how cells and
organisms work and thus of establishing functional links between genotypes and
phenotypes. Accordingly, high-throughput experiments are aiming at describing
cellular networks and providing descriptions and visualizations of key functional
modules. In protein–protein interaction networks, these modules represent protein
complexes with a well-defined function such as the proteasome, the nuclear pore
complex, the RNA polymerase and many other unknown complexes or groups of
proteins that interact with each other in one particular molecular pathway (Fig. 17.8)
[30–32]. In the case of genetic interaction networks [24], these modules may repre-
sent genes that have coherent patterns of interactions with other genes in the genome
and are thus constituted of genes with shared functions. They can also be groups
of genes that show positive genetic interactions that reflect their membership to a
particular molecular pathway or complex [24,33]. In models of metabolic networks,
functional modules can be identified from the patterns of epistatic interaction among
genes [34] or groups of genes that are highly connected among them based on
network topology [35]. In the case of transcriptional networks, gene modules may
represent co-regulated groups of genes and thus genes that are regulated by the same
transcription factors or that are induced or repressed by the same signals upstream
in the network [36]. Finally, in systematic genetic screens, modules could be groups
of genes that, when individually inactivated, have similar effects on a phenotype
of interest such as inability of the organism to develop a particular structure or to
proliferate in a particular growth condition. Ultimately, these modular maps serve
to associate genes with particular functions or phenotypes, to the extent that the
function of a gene can be inferred simply from its patterns of association with other
genes. This is the case, for instance, for the protein–protein interaction modules
whereby the best predictor of a protein’s knockout phenotype is the knockout
phenotype of the other proteins that form a protein complex with this protein [37].
With this modular organization in mind, building genotype–phenotype maps in
systems biology results in connecting specific modules with traits of interests.
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Fig. 17.8 The yeast protein interaction map as established by Tarassov et al. [30]. White circles
represent proteins and red arcs pairwise interactions. These maps allow to visualize molecular
modules (highly connected sets of nodes) that are involved in common molecular functions and
their interconnections (figure provided by G. Diss)

13 Incomplete Congruence Between Systems Biology
and Quantitative Genetics Maps

The identification of such functional cellular modules should in theory facilitate
the identification of the genetic variation that underlies a trait of interest within or
between species. For instance, when two individuals vary in a particular phenotype,
the place to look at in the genome to find the underlying polymorphisms should be
in the gene modules that have been identified as being involved in this phenotype.
Similarly, one could model genetic variation in the trait of interest as slight
modifications in the parameters of the reconstituted modules, such as concentrations
of key elements, affinity constant, and half-lives. Intuitively, one would expect
QTLs for a phenotype of interest to fall in the genes that have been shown
through molecular genetics or systems biology to be involved in the trait. However,
identifying the genes involved in a particular function or phenotype (necessary for
the function) is quite different from identifying the mutations that may affect the
trait in natural populations, as shown by the study on yeast morphology mentioned
above. There are several reasons for this.
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First, in quantitative genetics, the effect of an allele is a property of the allele in a
particular genotypic and environmental context, but not of the locus. Mutant alleles
are not necessarily interchangeable. Most gene annotations and genetic screens are
derived from loss-of-function mutations and this type of alleles is likely to be rare in
natural populations. Also, many effects caused by loss-of-function mutations may
simply be masked by the presence of buffering mechanisms such as duplicated
genes and alternative pathways [38]. Second, gain-of-function mutations are rarely
studied and when they are, they are most often limited to gene overexpression,
which represents only one particular case of gain of function. Others could be, for
instance, amino acid substitutions that increase the catalytic activity of an enzyme
or that make protein activity constitutive. These two types of genetic perturbations
(complete deletion and overexpression) already confirm that different types of
mutations are rarely equivalent: loss-of-function mutations by deletions and gain-
of-function mutations by overexpression give strikingly different phenotypes when
targeting the same genes [39]. Third, these studies are almost exclusively focused
on single genetic backgrounds for each species and thus ignore complex gene-
by-background interactions (epistasis), even if these have proven to be common.
Even a very strict definition of a function or phenotype such as gene essentiality is
highly dependent on the genetic background in which experiments are performed.
For instance, the laboratory strain of S. cerevisiae was shown to have around 1,000
of its 5,000 genes (20%) as being essential [40]. A recent study on a closely related
strain of the same species shows that 894 genes are essential in the two strains and
44 and 13 genes are essential in a strain-specific manner, and this, despite the fact
that nearly 50% of the gene coding sequence are 100% identical between these two
strains [41]. Genes that are reported to be essential in the laboratory background also
show nucleotide polymorphism in nature and cause large phenotypic differences
among individuals. Brown et al. [42] mapped the genetic basis of a complex
gene expression phenotype segregating among vineyard yeast strains to a single
nucleotide polymorphism. The polymorphism is a frame-shift mutation in SSY1, a
gene encoding an amino acid transporter that is annotated as being essential in the
laboratory strains. These strains have auxotrophic markers that impede the synthesis
of certain amino acids, which makes their importation necessary.

14 Modular Biology, Distributed Genetic Effects

Another reason why systems biology and quantitative genetics maps may have
limited overlap could be that systems biology approaches identify only the most
important constituents—genes with the strongest effects on the phenotypes—and
largely underestimate pleiotropic effects. Several lines of research suggest that what
have been viewed as isolated, canonical molecular pathways and modules in the
cells are in fact more connected than previously assumed [43]. The component
with major contributions, i.e. those that can be measured and detected in typical
large-scale experiments, may in fact be the components that would form the core
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of the modules. There may be marginal contributions of many other genes in
the genome that are missed through typical experiments and thus be excluded
from current representation of the molecular networks that underlie key cellular
functions. A dense pathway organization may in fact be only visible when more
sensitive and direct measurements of endophenotypes are performed. For instance,
this view is emerging in studies of biomolecular networks. A recent protein–protein
interaction map aimed at establishing links among cellular regulators (protein
kinases and phosphatases) indeed revealed that unlike what is traditionally shown in
the linear representations of signaling pathways, regulatory proteins make many
interactions with other regulatory proteins and do not restrict their activity to a
limited number of modules [44, 45]. This model of a highly densely connected
network of cellular regulators is also supported by sensitive proteomics screen that
showed that inactivation of most protein kinases and phosphatases affect large parts
of the cell signal transduction machinery and are not limited to canonical pathways
or modules [46], despite what is suggested from the modular view of cellular
systems. It is therefore possible that most QTLs are not located at the core of the
modules but act in the periphery.

15 Data Integration in Evolutionary Systems Biology

Despite the disparity between the two types of genotype–phenotype maps, there
is ample evidence that they are not completely orthogonal and that the two types
of maps can be integrated. Indeed, there are several examples where both maps are
used to better interpret how cellular networks are organized and evolve. For instance,
we used data from the functional dissection of the yeast transcriptional network to
show that when a gene was highly connected in the transcriptional network, it was
more likely to evolve new expression levels under neutral evolution and to show
genetic variation for gene expression in natural populations [47]. The integration of
large-scale systems biology data with that of yeast expression QTLs also allowed
to build predictive models of causal relationships between DNA variation and
endophenotypes. In this case, the use of prior knowledge from systems biology
enriched the types and power of the inferences that can be made [48]. A recent paper
by Jelier et al. [49] offers an elegant illustration of how the combination of systems
biology and population genomics can be used to predict the effect of mutations on
phenotypic variation. Using the partial genomic sequences of 19 strains of yeast,
the authors used phylogenetic comparisons to estimate the likelihood that mutations
will have an effect on proteins functions. Using phenotypic data on the effects of
gene deletions collected in systems biology investigations in laboratory strains, the
authors were able to make and test predictions on the growth phenotype of the
natural strains in specific conditions. Surprisingly, the approach works and shows
that from comprehensive systems biology genotype–phenotype maps, we can start
to build predictive models of how natural genetic variation may affect cellular
phenotypes.
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The systematic combination of systems biology and quantitative approaches
will provide more information than these two independent fields can provide
on their own. The integration of large-scale systems biology data with that of
yeast expression QTLs, for instance, allowed to build predictive models of causal
relationship between DNA variation and endophenotypes. In this case, the use
of prior knowledge from systems biology enriched the types and power of the
inferences that can be made [48]. Ultimately, a complete description of the
genotype–phenotype maps of all the molecular levels between DNA sequence and
organismal phenotypes such as morphology or behavior would be necessary to fully
comprehend how phenotypic variation is generated. This would allow mapping
the causal relationships between different levels of organizations and phenotypic
variation that affects fitness in an ecological context. In principle, any molecular trait
that can be quantitatively measured and that is heritable can be assessed using these
approaches. Recently, these systems approaches have been applied to the genetic
dissection of natural variation in molecular traits. Instead of measuring organismal
traits and relating them to genotypes, systems genetics approaches have focused on
quantifiable molecular phenotypes. The budding yeast, which has been the test bed
for the development of most systems biology approaches, provides several examples
of such approaches. Molecular phenotypic traits such as gene expression levels
[50] (mRNA abundances), stochasticity in protein abundance [51] and transcription
factor DNA binding intensities [52] have been genetically mapped among natural
strains.

One pioneering series of studies on the combination of systems biology
approaches with quantitative genetics comes from the comparison of the
transcriptional landscape of two yeast strains and their segregants. In these
experiments, more than 100 haploid segregants of a cross between a laboratory
(BY) and a vineyard strain (RM) have been densely genotyped and expression
profiled [50]. The results show that gene expression levels are highly heritable
among yeast strains. Whereas a large number of transcripts (up to 75%) map to
at least one QTL, 50% of all transcripts may have at least five additive QTLs and
20% at least 10 additive QTLs [53]. Furthermore, more than 57% of transcripts
are influenced by a genetic interaction and a similar proportion (47%) is influenced
by genotype-by-environment interaction. This confirms that even relatively simple
traits such as transcript abundances may have very complex genotype–phenotype
maps, with many QTLs per trait and abundant context dependent effects.

In order to completely elucidate genotype–phenotypes maps at the molecular
levels, we need integrative approaches where not only mRNA abundances are
considered but also many other endophenotypes such as protein levels, protein
activity (post-translational regulatory states) as well as metabolite levels, signaling
network activities and cell physiological states. Combining multiple levels of QTL
analysis, from macroscopic to microscopic phenotypes, will then allow draw-
ing causal relationships between DNA polymorphism, expression polymorphism,
protein interaction, cell physiology and morphology and eventually organismal
phenotypes. Identifying one QTL that affects traits at several of these levels of
organization would reveal how a mutation affects, in a causal manner, mRNA
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expression, protein abundance, protein activity, and eventually cellular or organ-
ismal phenotypes. Another advantage of this integrative approach is that we expect
that significant levels of polymorphism that are not visible at the level of mRNA
abundance to be visible at other levels of cellular organization. For example,
several cellular responses are taking place in a time frame that is much shorter
than what is needed for gene expression to be induced or repressed, such as
phosphorylation cascades and neural activity. Unfortunately technologies are much
more advanced in terms of gene expression profiling than they are for any other
type of measurement of molecular phenotypes. However, there have been important
advances in the development of tools that allow us to study cellular responses
systematically. For instance, molecular tools and reporters are available to study the
dynamic of signaling cascades in vivo in model organisms such as S. cerevisiae
using protein-interaction reporters that can be integrated into the genome [54].
Protein activities can now be measured on a proteome-wide scale using large-scale
phosphoproteomics [55] or TF-DNA binding sites [52].

Another key advantage of these integrative approaches is that it will allow us
to compare the genotype–phenotype map of multiple levels of organization, which
will clarify how genotypic information is “translated” in a cell. While we now know
of a few examples where the molecular contributions of a QTL at the cellular level
can be suggested from the sequence data, many quantitative genetics phenomena
still remain almost completely unresolved at the molecular and cellular level. These
include for instance the buffering of genetic variation at one locus by another or
by cellular and developmental processes, as well as genotype-by-sex interactions,
genotype-by-environment interactions and incomplete penetrance. These interac-
tions are all cases where the effect of an allele depends on the state of the cellular
networks. Quantitative genetics has very little to say on how these complex interac-
tions could take place. The joint analysis of natural variation with the combination
of the measurements of several endophenotypes and/or perturbations will be key
to achieve these goals. The recent study of QTL for transcript levels and protein
abundance in yeast exemplifies this rationale [56]. It was found that in many cases,
heritable gene expression differences (mRNA) do not translate into differences in
protein abundance. This means that a significant fraction of the genetic variation at
one level maybe filtered out by the cell in subsequent steps. Inversely, some variation
that affects protein abundance is not present or detectable at the transcriptional level.
Either there is no transcriptional variation of that gene or it is amplified and becomes
detectable only at the protein level, or it is during translation or protein degradation
that heritable genetic variation is exposed. Another recent study on the divergence
of gene expression levels between species pointed towards such key levels in the
cell where the extent of genetic variation is modified. Different species of yeast
show divergent patterns of gene expression levels. Tirosh et al. examined the role
of chromatin regulators in shaping this divergence between S. cerevisiae and S.
paradoxus [57, 58]. When chromatin regulators are deleted in these two species,
the authors observed a systematic increase in the divergence of gene expression
levels, which is consistent with a model under which chromatin regulators buffer
genetic variation that acts upstream in transcriptional networks. Together, these
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Fig. 17.9 The mapping of phenotypic traits on genotypic traits must consider the different layers
of endophenotypes in order to determine how cellular networks buffer genetic variation from one
level to the next (phenotypic variation decreases as we move from the genotype to organismal
phenotypes) and how the effects found at one level may influence higher levels (accumulation of
effects and increase phenotypic variation). Elucidating these mechanisms will allow to understand
the context dependence of allelic effects in quantitative genetics

studies show that the relationship between alleles and phenotypes greatly depend on
the organization of cellular networks and exemplify the power of combining systems
biology approaches with natural genetic variation. The exact mechanisms by which
variation at one level is buffered by other levels of cellular organization remain to be
examined but we suggest that common mechanisms and rules will emerge as more
investigations are performed. As we move from the genotype towards organismal
phenotypes, there may be more opportunity for mutations to affect the trait—
because each level depends on the previous one plus other factors—but this may
be counterbalanced by cellular buffering mechanisms (Fig. 17.9). Systematic studies
that combine organismal phenotypes with endophenotypes will be key to identifying
these mechanisms and thus understanding how condition-dependent allelic effects
take place.
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16 Conclusion

Quantitative genetics has provided the evolutionary biology community with strong
theoretical and analytical bases for the analysis of phenotypic traits. The next
challenge will now be to be able to predict phenotypes from genotypes. This
challenge requires a good understanding of how biological systems work, which is
now made possible by systems biology, but also how natural genetic variation affects
the component of this system and how the organization of these systems influences
allelic effects. This can only be achieved by combining the two disciplines into
integrative, evolutionary systems biology approaches.
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